
Arbitrary Instruction Tracing with DTrace
Christos Margiolis

christos@FreeBSD.org

Abstract—This paper presents the high-level ideas behind
kinst, a new DTrace provider available in FreeBSD, which
enables tracing of arbitrary instructions and inline functions in
the kernel.

Index Terms—FreeBSD, DTrace, tracing, kernel, assembly, ELF,
DWARF

I. INTRODUCTION

DTrace [1] is a dynamic tracing framework that originated
in Solaris in 2005 and was later ported to FreeBSD. It is used
for profiling, performance measurement and debugging in real-
time. DTrace is especially powerful thanks to the D language;
a C and AWK-like scripting language used for writing DTrace
scripts, offering a wide range of built-in functions.

In DTrace terminology, a “provider” is a module that
performs a particular instrumentation in the kernel (and
sometimes userland), for example, tracing a syscall or the
entry point of a function. A “probe” is the specific point of
instrumentation.
kinst is a new DTrace provider that was created with the

aim of solving the limitations of the FBT (Function Boundary
Tracing) provider, that is, absence of inline function tracing,
and being unable to perform more fine-grained tracing.

The source code for kinst lives under sys/cddl/dev/

kinst [2]. It is available from FreeBSD-14.0 onwards and is
supported on amd64, arm64 and riscv.

The origin of the name kinst is inspired from an early
paper written by A. Tamches and B. Miller [3] discussing a
tracing tool they developed called “KernInst”.

II. USAGE

The following three different syntaxes can be used in kinst:
• kinst::<function>:

• kinst::<function>:<instruction>

• kinst::<inline_function>:<entry|return>

The first syntax will trace all instructions in <function>

. The second will trace the specific instruction at the offset
specified by <instruction>, which can be obtained from
the function’s disassembly. The third will trace either the entry
or return point of an inline function.

Below is an example of inline tracing with kinst, which
traces the return points of all inline copies of critical_enter
():

dtrace -n ’kinst::critical_enter:return’
dtrace: description ’kinst::critical_enter:

return’ matched 130 probes
CPU ID FUNCTION:NAME
1 71024 spinlock_enter:53
0 71024 spinlock_enter:53

1 70992 uma_zalloc_arg:49
1 70925 malloc_type_zone_allocated:21
1 70994 uma_zfree_arg:365
1 70924 malloc_type_freed:21
1 71024 spinlock_enter:53
0 71024 spinlock_enter:53
0 70947 _epoch_enter_preempt:122
0 70949 _epoch_exit_preempt:28
ˆC

Listing 1. Inline tracing with kinst

III. INSTRUCTION INSTRUMENTATION

Probe information is passed from dtrace(1) to kinst

(4) through libdtrace using a character device file in /dev

/dtrace/kinst. kinst(4) is responsible for locating the
function in the kernel, disassembling it, creating a private
probe structure with metadata about the instruction and the
probe, and creating DTrace probes for each of the target
instructions. To achieve this, the original instruction is saved
in the probe structure for later use, and overwritten with
a breakpoint instruction. Once the CPU hits the DTrace-
installed breakpoint, the kernel enters DTrace through its trap
handler (see sys/$ARCH/$TARGET_ARCH/trap.c), and since
the breakpoint was installed by kinst, the kernel eventually
enters kinst_invop(), the function responsible for tracing
the instruction, either by emulating it in software (similar to
FBT), or executing it in a trampoline.

func

instr

instr ->

breakpoint

instr

...

...

instr ->

breakpoint

instr

dtrace(1)

command

libdtrace: ioctl
with probe

info to /dev/

dtrace/kinst

kinst(4): create
probe(s), overwrite

instruction(s)
with breakpoints

breakpoint handler dtrace_invop() kinst_invop()

breakpoint handler dtrace_invop() kinst_invop()

Fig. 1. General pipeline.

All architectures supported by kinst have instructions and
functions that are unsafe to trace, which are listed in the man
page.

IV. TRAMPOLINE

Trampolines are executable blocks of memory, which kinst

uses to instrument instructions, in contrast to emulating them
in software. The target instruction is copied to the trampoline
and execution is transferred to it once the kernel enters kinst.
After the trampoline has executed the instruction, the kernel
resumes execution normally.

The need for executing instructions in a trampoline arose
from the fact that, unlike FBT, which can trace only the “entry”
and “return” instructions of a function, kinst can trace almost
all instructions of an ISA. This, as is expected, makes writing
emulation code for all instructions and architectures a rather
tedious and error prone task.

A. Under the hood

kinst keeps an internal TAILQ(9) of memory “chunks” of
size PAGE_SIZE, logically divided into individual trampolines
using BITSET(9). Memory is allocated using vm_map_find

(9) with VM_PROT_EXECUTE and is located above KERNBASE

on amd64, and VM_MIN_KERNEL_ADDRESS on arm64 and
riscv. As shown in Figure 2, the trampoline contains the target
instruction, followed by a breakpoint on arm64 and riscv, or a
jump instruction on amd64, which is used to return back from
the trampoline and resume execution (see Sections IV-B and
IV-C).

trampchunk

tramp

...

tramp

instruction

breakpoint/jmp

trampchunk

...

PAGE_SIZE

KINST_TRAMP_SIZE

Fig. 2. Trampoline layout.

B. amd64 implementation notes

As mentioned in section IV-A, the trampoline in the amd64
port of kinst contains the target instruction, followed by a
far-jump to the instruction following the one that was traced,
in order to resume execution.

instr1 (breakpoint) instr2

trap handler

kinst_invop()

relocate pc-relative
instruction offsets,

set pc to trampoline

trampoline
[instr, jmp]

Fig. 3. amd64 control flow.

Each thread and CPU is assigned a trampoline, whose
contents are rewritten upon every instrumentation. The reason
for having both per-thread and per-CPU trampolines, is that
per-thread trampolines cannot be used safely when the thread
executing prior to the breakpoint had interrupts disabled. This
mechanism, although memory-efficient, has proved to be quite
bug-prone when run in VMs with more than one vCPUs,
because of the constant fetching and rewriting whenever the
kernel enters kinst_invop(). Work is being done to replace
per-thread/per-CPU trampolines with per-probe trampolines, as
is the case in arm64 and riscv.

When copying an instruction to the trampoline, kinst

has special handling for RIP-relative instructions, whose
displacements have to be re-encoded to be relative to the
trampoline in order to be executed in a trampoline.

Additionally, call instructions have to be emulated in
assembly because re-encoding a trampoline-relative offset
requires reserving space in the stack (see bp_call label in
sys/cddl/dev/dtrace/amd64/dtrace_asm.S).

C. arm64 and riscv implementation notes

In contrast to amd64, it is not possible to encode a far-jump
in a single instruction in arm64 and riscv, and is also not
possible to clobber registers inside the trampoline to encode a
two-instruction sequence to achieve a far-jump. An alternative
approach to return from the trampoline in this case, is to use
a breakpoint instruction, instead of a far-jump.

Once the trampoline instruction has executed and the CPU
hits the breakpoint, the kernel will jump back to the trap handler,
and re-enter kinst_invop() (see Section III). kinst keeps
an internal per-CPU state structure to differentiate between
breakpoints that were triggered from the trampoline and ones
that did not (i.e., triggered by a probe that fired). In the former
case, kinst_invop() saves the current CPU state register,
disables interrupts so that the thread is not interrupted for the
duration of the “double-breakpoint” execution, and sets the
program counter to the trampoline. In the latter case, that is,
when we have returned from the trampoline and it is time

to resume execution, kinst_invop() restores the CPU state
register and interrupts and manually sets the program counter
to the instruction following the one that was traced. Figure 4
shows the control flow of this mechanism.

instr1 (breakpoint) instr2

trap handler

kinst_invop()

KINST_STATE_FIRED
restore state and
interrupts, set pc

to next instruction

save state, disable
interrupts, set

pc to trampoline

trampoline [instr,
breakpoint]

yesno

Fig. 4. arm64 & riscv control flow.

Each probe is assigned its own trampoline and written at
instruction parse-time, which, as opposed to amd64, avoids
the need to fetch and rewrite per-thread/per-CPU trampolines
every time kinst_invop() executes.

V. INLINE FUNCTION TRACING

Inline tracing in kinst is nothing more than a syntactic
layer added to libdtrace. When the user requests a probe of
the form kinst::<function>:<entry|return>, libdtrace
parses the DWARF information of all loaded kernel modules
to find if <function> is an inline, in which case it creates
regular kinst probes at the exact offset(s) the inline copy’s
entry or return 1 point(s) is found. However, if <function> is
not an inline, the probe is automatically converted to an FBT
one, to avoid code duplication. Figure 5 showcases an example
of how libdtrace handles both inline and non-inline functions.

More information can be found on Christos Margiolis’
website [5] [6].

1Unlike FBT, kinst cannot accept an empty probe field when in ”inline
tracing mode”, so the user must specify either an entry or return probe.
This is a deliberate design choice to differntiate between inline tracing and
regular mode.

Inline function Non-inline function

kinst::cam_iosched_has_more_trim:
entry

{
printf("\t%d\t%s", pid, execname);

}

kinst::cam_iosched_get_trim:13,
kinst::cam_iosched_next_bio:13,
kinst::cam_iosched_schedule:40
{

printf("\t%d\t%s", pid, execname);

}

kinst::malloc:entry
{

exit(0);
}

fbt::malloc:entry
{

exit(0);
}

Fig. 5. Syntactic transformations implemented in cddl/contrib/
opensolaris/lib/libdtrace/common/dt_sugar .c

A. DWARF overview
DWARF is a debugging standard used by compilers and

debuggers, which contains all sorts of information (e.g. function
names, variable locations, etc.) about a compilation unit.
Debugging information is represented as a tree of entries called
DIEs (Debugging Information Entry), one per compilation unit.
Each entry consists of various attributes, such as its name,
location in memory, declaration file, and more. 2

Suppose the user runs the following DTrace command:
dtrace -n ’kinst::vfs_freevnodes_dec:entry’

libdtrace has to first detect whether vfs_freevnodes_dec
() is an inline function, meaning finding the following entry:
<1><1dfa144>: Abbrev Number: 94 (

DW_TAG_subprogram)
<1dfa145> DW_AT_name : (indirect
string) vfs_freevnodes_dec
<1dfa149> DW_AT_decl_file : 1
<1dfa14a> DW_AT_decl_line : 1447
<1dfa14c> DW_AT_prototyped : 1
<1dfa14c> DW_AT_inline : 1

Listing 2. Inline function declaration DIE

The type of the entry is specified in DW_TAG_* and the at-
tributes in DW_AT_*. In this case the tag DW_TAG_subprogram

means that this entry represents a function and the
DW_AT_inline attribute that the function is inlined. Now that
libdtrace knows the function is inlined, it needs to find the
DIEs of each inline copy, such as the following:
<3><1dfe45e>: Abbrev Number: 24 (

DW_TAG_inlined_subroutine)
<1dfe45f> DW_AT_abstract_origin: <0
x1dfa144>
<1dfe463> DW_AT_low_pc : 0
xffffffff80cf701d
<1dfe46b> DW_AT_high_pc : 0x38
<1dfe46f> DW_AT_call_file : 1
<1dfe470> DW_AT_call_line : 3458
<1dfe472> DW_AT_call_column : 5

Listing 3. Inline function copy DIE

2DWARF entries can be inspected by running readelf -wi file
or using dwarfdump(1).

Inline copies are defined with the
DW_TAG_inlined_subroutine tag. The
DW_AT_abstract_origin attribute specifies the DIE
offset corresponding to the function declaration —
in this case 0x1dfa144 points to the declaration of
vfs_freevnodes_dec() (see above).

B. Calculating call boundaries

DWARF defines call bounadaries with either of the following
two ways:

• By specifying the DW_AT_low_pc and DW_AT_high_pc

attributes.
• By specifying the DW_AT_ranges attribute when the

address range of the inline copy is not contiguous.
In the first case, the lower boundary of the inline copy’s

location is defined in DW_AT_low_pc and the upper boundary
is calculated by adding DW_AT_high_pc to DW_AT_low_pc:

<3><1dfe45e>: Abbrev Number: 24 (
DW_TAG_inlined_subroutine)
<1dfe45f> DW_AT_abstract_origin: <0
x1dfa144>
<1dfe463> DW_AT_low_pc : 0
xffffffff80cf701d
<1dfe46b> DW_AT_high_pc : 0x38
<1dfe46f> DW_AT_call_file : 1
<1dfe470> DW_AT_call_line : 3458
<1dfe472> DW_AT_call_column : 5

Listing 4. DIE with low and high PC boundaries

Using the formula mentioned above, we end up with the
following boundaries:

L = 0xffffffff80cf701d

H = 0xffffffff80cf701d+ 0x38 =

0xffffffff80cf7055

(1)

The second case is a bit more involved. Consider the
following DIE of an inline copy of vfs_freevnodes_dec()
which has DW_AT_ranges:

<3><1dfd2e2>: Abbrev Number: 58 (
DW_TAG_inlined_subroutine)
<1dfd2e3> DW_AT_abstract_origin: <0
x1dfa144>
<1dfd2e7> DW_AT_ranges : 0x1f1290
<1dfd2eb> DW_AT_call_file : 1
<1dfd2ec> DW_AT_call_line : 3405
<1dfd2ee> DW_AT_call_column : 3

Listing 5. DIE with DW_AT_ranges boundaries

The DW_AT_ranges attribute refers to the .debug_ranges
section found in debug files, and can be inspected by run-
ning dwarfdump -N file. Searching for the DW_AT_ranges
value 0x1f1290 specified in the DIE shown above, we find
the following range group:

Ranges group 38809:
ranges: 3 at .debug_ranges offset 2036368 (0

x001f1290) (48 bytes)
[0] range entry 0x000025c8 0x000025f9

[1] range entry 0x0000261a 0x00002621
[2] range end 0x00000000 0x00000000

Listing 6. DW_AT_ranges example

All ”range entry” lines correspond to the different address
ranges the inline copy is split into, usually as a result of having
early returns. The call boundaries are calculated by adding each
range entry’s values to the lower boundary (DW_AT_low_pc) of
the root DIE, that is, the file the inline function is implemented
in:
<0><1dee9fb>: Abbrev Number: 1 (

DW_TAG_compile_unit)
<1dee9fc> DW_AT_producer : (indirect
string) FreeBSD clang version 13.0.0 (
git@github.com:llvm/llvm-project.git
llvmorg-13.0.0-0-gd7b669b3a303)
<1deea00> DW_AT_language : 12 (C99)
<1deea02> DW_AT_name : (indirect
string) /usr/src/sys/kern/vfs_subr.c
<1deea06> DW_AT_stmt_list : 0x6cb448
<1deea0a> DW_AT_comp_dir : (indirect
string) /usr/obj/usr/src/amd64.amd64/sys/
GENERIC
<1deea0e> DW_AT_low_pc : 0
xffffffff80cf4020
<1deea16> DW_AT_high_pc : 0xde3d

Listing 7. Compilation unit DIE

Adding the range entries to the lower boundary of the root
DIE (0xffffffff80cf4020), we get the following inline copy
call boundaries:

First range entry:

L = 0xffffffff80cf4020+ 0x000025c8 =

0xffffffff80cf65e8

H = 0xffffffff80cf4020+ 0x000025f9 =

0xffffffff80cf6619

(2)

Second range entry:

L = 0xffffffff80cf4020+ 0x0000261a =

0xffffffff80cf663a

H = 0xffffffff80cf4020+ 0x00002621 =

0xffffffff80cf6641

(3)

C. Finding the caller function

Having acquired the call boundaries of the inline copies,
libdtrace can proceed to find the name of the caller function,
which is needed to create a kinst probe. This is done by
finding which ELF symbol the call boundaries are inside of,
as expressed by the following condition:

Symlo ≤ Inllo ≤ Inlhi ≤ Symhi

inlinecall(1) [5] [7] is a small utility written as a testing
program which implements the mechanism explained so far.
It takes an inline function and a debug file as arguments, and
prints the call boundaries of all inlines copies found, as well
as the caller file and function.

D. Calculating the entry and return offsets
This is the last step libdtrace has to go through to convert the

inline function probe to actual kinst probes. Here it fetches
the boundaries of the caller function from ELF, and, using the
boundaries of the inline copy, it calculates the exact offsets for
either the entry or return probes.

In theory, the entry and return offsets would simply be
calculated as:

Entry = Inllo − Callerlo

Return = Inlhi − Callerlo

However, it turns out that there are multiple caveats we have
to take into consideration, but the details are out of the scope
of this paper (see [6] for an explanation).

These offsets are then used used to create regular kinst
probes of the form kinst::<function>:<instruction>,
which is what kinst actually expects:
dtrace -dn ’kinst::cam_iosched_has_more_trim:

entry’
kinst::cam_iosched_get_trim:13,
kinst::cam_iosched_next_bio:13,
kinst::cam_iosched_schedule:40
{
}

dtrace: description ’kinst::
cam_iosched_has_more_trim:entry ’ matched 4
probes

CPU ID FUNCTION:NAME
0 81502 cam_iosched_schedule:40

0 81501 cam_iosched_next_bio:13
2 81502 cam_iosched_schedule:40
1 81502 cam_iosched_next_bio:13
1 81503 cam_iosched_schedule:40

ˆC

Listing 8. Inline to regular probe conversion

VI. CONCLUSION & FUTURE WORK

kinst, although a low-level tool, can be used in a variety of
workflows, especially when working with very large functions,
where tracing the entry or return points of them does not always
provide adequate answers.

Future work includes writing more high-level tooling around
kinst, as well as detecting and putting return probes on tail-
call optimized functions.

I would like to thank Mark Johnston <markj@FreeBSD.

org> and Mitchell Horne <mhorne@FreeBSD.org> for their
valuable help and feedback.

REFERENCES

[1] Illumos Operating System “Dynamic Tracing Guide”.
https://illumos.org/books/dtrace

[2] FreeBSD src “kinst” https://cgit.freebsd.org/src/tree/sys/cddl/dev/kinst
[3] Tamches, Ariel & Miller, Barton P. “Fine-Grained Dynamic

Instrumentation of Commodity Operating System Kernels”.
https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full papers/tamches/tamches.pdf

[4] The DWARF Standard. https://dwarfstd.org/
[5] Christos Margiolis “Using DWARF to find call sites of inline functions“.

https://margiolis.net/w/dwarf inline/
[6] Christos Margiolis “Inline function tracing with the kinst DTrace

provider”. https://margiolis.net/w/kinst inline/
[7] GitHub, inlinecall(1). https://github.com/christosmarg/inlinecall

https://illumos.org/books/dtrace
https://cgit.freebsd.org/src/tree/sys/cddl/dev/kinst
https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/tamches/tamches.pdf
https://dwarfstd.org/
https://margiolis.net/w/dwarf_inline/
https://margiolis.net/w/kinst_inline/
https://github.com/christosmarg/inlinecall

